Mars

All posts tagged Mars

Mars_poster

Mars will soon make its closest approach to Earth in over a decade, and Boise State’s Physics Dept will host an astronomical viewing party to celebrate on Tuesday, May 31 from 8:30p till 11p.

The event will kick off in the Multi-Purpose Classroom Building, room 101 on Boise State’s campus with a public talk on the latest science of the red planet from local planetary scientist Dr. Josh Bandfield of the Space Science Institute.

Then at 9:30p the event will move to the Boise State quad, where telescopes will be set up to view Mars, Jupiter, and Saturn.

Contact Prof. Brian Jackson (bjackson@boisestate.edu@decaelus) with questions.

Event poster available here.

Endolithic ("within-rock") life. From http://d32ogoqmya1dw8.cloudfront.net/images/microbelife/extreme/endoliths/cryptoendolith.jpg.

Endolithic (“within-rock”) life

Today, in physics, we hosted Prof. Nancy Chanover of New Mexico State Astronomy for our departmental seminar. Chanover gave a fascinating talk on her work developing acousto-optical tunable filters (AOTFs) to look for life in exotic terrestrial environments and on Mars.

AOTFs involve the application of an oscillating radio signal to a birefringent crystal. By applying the right frequency to the crystal, the crystal can be made to filter out light of very specific colors. Measuring the filtered light that comes out allows one to measure the colors of a object — is there more red light that filters through than blue, for instance?

One big advantage of these AOTFs is that they can produce spectra of rocks, minerals, anything that is colored, without any moving parts, and no moving parts is a big plus when you send an instrument to another planet.

In her talk, Prof. Chanover discussed her group’s work to develop AOTFs and techniques to analyze the emergent spectra and identify minerals on planets or moons in our solar system. Different minerals can have distinctive colors, and so taking the spectrum of a Mars rock, say, could allow us to identify its composition, without having to vaporize the rock to chemically analyze it.

The same technique could be used to look for Martian life. In some cases, extremophiles on the Earth leave tell-tale coloration in rocks (see figure at left), and so Martian life (if it exists) might do the same. Prof. Chanover’s group is looking for the distinctive spectral signatures of terrestrial biota in hopes of sending an AOTF to Mars and looking for life there, particularly in caves, which might be especially hospitable for life.

As a precursor to exploration of Martian caves, Chanover discussed her work attaching an AOTF to a robot developed by the Jet Propulsion Lab that climbs walls using footpads inspired by geckos, a LEMUR. This project involved several unforeseen challenges — as she said, on one trip, she struggled to say “acousto-optical tunable filter” in Spanish to a dubious Mexican border guard on the way to a field site in Mexico. The life of a planetary scientist.

Pressure variations (in hectoPascal, hPa) vs. local time for one dust devil pressure dip. The blue curve shows our model fit.

Pressure variations (in hectoPascal, hPa) vs. local time for one dust devil pressure dip. The blue curve shows our model fit.

Dust devils occur in arid climates on the Earth and ubiquitously on Mars. Martian dust devils have been studied with orbiting and landed spacecraft, while most studies of terrestrial dust devils have involved manned monitoring of field sites, which can be costly both in time and personnel. As an alternative approach, my colleague Ralph Lorenz and I performed a multi-year in-situ survey of terrestrial dust devils using pressure loggers deployed at El Dorado Playa in Nevada, USA, a site known for dust devil activity.

When a dust devil passed over our pressure sensors, it appeared as a pressure dip in the time series, as illustrated in the figure. By modeling these signals, we learned a lot of about dust devils. For instance, in spite of expectations, we found signals that looked a lot like dust devils that occurred at night and even in the winter. So do dust devils happen year-round, day and night? More work will help us figure it out.

Our paper on this study will appear soon in the Journal of Geophysical Research Planets.

From https://emps.exeter.ac.uk/physics-astronomy/research/astrophysics/phd-opportunities/modelling-shock-waves/.

From https://emps.exeter.ac.uk/physics-astronomy/research/astrophysics/phd-opportunities/modelling-shock-waves/.

On Friday, everyone in our research group gave a little update on what they’ve been up to.

Liz and Jennifer talked about Parmentier et al.’s (2013) paper on the meteorology of hot Jupiters and how condensates are transported throughout these dynamic atmospheres.

Emily talked about working through the first few chapters of Murray & Dermott’s classic Solar System Dynamics. She will eventually study the orbital dynamics of systems of exoplanets very close to their host stars.

Brenton discussed his reading of Balme & Greeley (2006) on dust devils in preparation for working with me on terrestrial and Martian dust devils. A very exciting possibility, Brenton and the rest of the group said dust devils are common just south of Boise. Good chance we can do some in-situ monitoring locally.

Nathan spoke briefly about looking for more very short-period planets using data from the Kepler and K2 missions.

In attendance were Liz Kandziolka, Jennifer Briggs, Emily Jensen, Brenton Peck, Nathan Grigsby, Trent Garrett, and Tiffany Watkins.