All posts tagged Mars

Suspended dust mass over time. Vertical lines mark the start of constant-speed descent (solid), visually detected dust lifting under the helicopter (dotted), and touchdown (dashed). The curves for sols 58, 61, 76, and 193 were obtained with the right eye, sol 69 with the left eye, and sol 64 with each eye (right eye dashed). From sol 64, there were times with the helicopter out of the field of view that were not measured.
Friction velocity and helicopter altitude. The Rabinovitch et al. (2021) model, adapted for atmospheric density of 0.020 kg/m3, 2,800 rpm, and Thrust:Weight = 1, is shown as a red dashed line. Horizontal lines show representative thresholds for a conventional model (Shao & Lu, 2000) and a low-pressure model (Swann et al., 2020); the calculated thresholds are for mobilization of sand (200 diameter, 3,200) and aggregates (500 μm, 380 kg/m3). Vertical solid lines show representative altitudes at which dust lifting was seen during landing and traverse; dotted lines are extended upward to 2x the model prediction.
The roar of the Death Star exploding would have been impossible to hear at a distance since sound can’t travel in space.

Even though sound cannot propagate through the vacuum of space, that doesn’t mean we don’t know what space sounds like. Audio recordings have provided a wealth of information for space scientists almost since the beginning of the space era. Because of their simple and robust operation, microphones have been included on many past and recent space missions, on which they have recorded wind sounds and dust sounds. They will even accompany NASA’s return mission to Saturn’s moon Titan in the 2030s. Audio recordings allow us to reach far across space but also back and forth through time, and probably the last, soulful vestiges of human civilization will persist in the form of audio long after we’re gone.

Continue Reading

Brian Jackson’s Press Conference Presentation

Contact Info

Ash devil near Great Sand Dunes National Park in Colorado. From


An key source of dust, dust devils help drive weather and climate on Mars. With a sophisticated suite of meteorological instruments, the Mars 2020 Perseverance rover can detect when a dust devil passes nearby — the instruments can see the pressure and dust perturbations from the dust devils. (Wind data were not available by the time of our work, so we didn’t include any — oh, well, next time.)

(a) The pressure perturbation from passage of a dust devil near Mars 2020. (b) The dustiness of the vortex – Mars 2020 has several dust sensors, and depending on how the dust devil blows over the rover, some of them will see a dust shadow (down dip) and some will see reflected light (up blip). From

In a two new studies, my research group used data from Mars 2020 to look for passing dust devils and spotted almost 1000 encounters over the missions first 178 days. We confirmed previous weather predictions that Mars 2020 would see more than other recent missions, including InSight and Curiosity. We also found out that there were lots of whirlwinds that passed by Mars 2020 that actually didn’t raise any dust — only about a quarter of whirlwinds showed any signs of dust-lifting.

These kinds of studies are important for understanding the martian dust cycle and the contribution from dust devils. Scientists know Mars’ dust cycle strongly affects climate, and increases in atmospheric dust increase the rate of water loss into space. Martian dust may even be toxic, so dust devils could pose a big hazard for humans on Mars.

Research Publications

  • Jackson, B. (2022) “Estimating the Heights of Martian Vortices from Mars 2020 MEDA Data.” Planetary Science Journal.
  • Jackson, B. (2022) “Vortices and Dust Devils as Observed by the Mars Environmental Dynamics Analyzer Instruments on Board the Mars 2020 Perseverance Rover.” Planetary Science Journal.

Jackson’s AAS Science Presentation