Brian Jackson

Associate Professor of Physics at Boise State University

  • About
  • Research
    • CV
    • Joining the Boise State Planetary Science Research Group
    • Research Experiences for Undergrads
    • Ultra-short-period planet database
    • The Short Period Planets Group — S(u)PerP(i)G
    • Google Scholar Page
    • Code
  • Teaching
  • Press
  • Extracurricular Activities
    • Field Trips
      • Bruneau Sand Dunes – 2022 Jun 29
  • Public Outreach
    • Boise State’s Astronomical Observatory
    • Central Idaho Dark Sky Reserve STEM Network

“A Survey for Very Short-Period Planets in the Kepler Data” — Jackson+ (2013)

Posted by admin on August 6, 2013
Posted in: Brian's publications, Journal Club.
Figure 20 from Jackson et al. (2013) showing the distance from their host stars at which planets would be torn apart.

Figure 20 from Jackson et al. (2013) showing the distance from their host stars at which planets would be torn apart (solid red line).

Today I submitted a new paper for publication, “A Survey for Very Short-Period Planets in the Kepler Data.” Our new survey of data from the Kepler planet-hunting mission has revealed planetary candidates with orbital periods as short as three hours, so close to their host stars they are nearly skimming the stellar surface.

We used data from the Kepler mission, which finds planets using the transit method — by looking for their shadows as the planets pass between their host stars and the Earth. Since the planets are so far from the Earth, we can’t see them directly and instead only see the little dip in brightness of the host star as the planet passes in front of it.

Over the last few decades, astronomers have found a breath-taking menagerie of exotic planetary systems, and the candidate planets we found in this paper are no exception: more than 100 times closer to their host stars than the Earth is to the Sun, if these candidates turn out to be rocky planets, their surface are baking at nearly 5,000 degrees F (3000 K), producing giant lakes of molten rock.

In fact, these planets are so close to their host stars that they are on the verge of being torn apart by the stars’ gravity. The figure at left shows the orbital distances for these planets (red dots) relative to the distance at which they would be torn apart (shown by the red line). The blue line shows where they would have been torn apart if, instead of being rocky, they were more like hot gas giant planets.

We’ve still got some work to do to make sure these candidates are actually planets, but if confirmed, they would be some of the closest planets to their stars ever discovered, once again overturning what astronomers thought we knew about where planets can live and what they’re like.

Posts navigation

← “Direct Imaging of a Cold Jovian Exoplanet in Orbit Around the Sun-Like Star GJ 504” — Kuzuhara+ (2013)
SDSS III 10th release; “Stellar Rotation Periods of the Kepler Objects of Interest” — McQuillan+ (2013) →
  • Twitter: decaelus

    Brian Jackson
    • Come join us at @BoiseState for an exoplanets and outreach postdoc - https://t.co/LgQkDfkVJd. Apps due by end of Ap… https://t.co/37IiiVvl6D 08:41:55 2023 Mar 8
    • Records show powerful, wealthy funders outside Idaho back school choice campaign https://t.co/tzrZgyYk4U via @idahocapitalsun 11:03:33 2023 Feb 3
    • Learn how to save the dark (https://t.co/CqYzD5o2Xh at @BroncoPhysics First Friday Astronomy event this Fri (Feb 3… https://t.co/8B3Set3tW0 11:49:28 2023 Jan 30
    @decaelus
  • Recent Posts

    • LPSC 2023
    • Taking the Universe’s Measure
    • Research Group Meeting – 2023 Mar 2
    • Resources for the Jupiter-Venus Conjunction
    • PHYS305 – 2023 Mar 1
  • Archives

    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
    • October 2014
    • September 2014
    • August 2014
    • July 2014
    • June 2014
    • May 2014
    • April 2014
    • March 2014
    • February 2014
    • January 2014
    • December 2013
    • November 2013
    • October 2013
    • September 2013
    • August 2013
    • July 2013
Proudly powered by WordPress Theme: Parament by Automattic.