astrobiology

All posts tagged astrobiology

Artist's conception of Kepler-452 b. From https://en.wikipedia.org/wiki/Kepler-452b#/media/File:Kepler-452b_artist_concept.jpg.

Artist’s conception of Kepler-452 b. From https://en.wikipedia.org/wiki/Kepler-452b#/media/File:Kepler-452b_artist_concept.jpg.

Exciting discovery reported last week of a planet a little bigger than Earth orbiting a star very like our Sun.

The planet, Kepler-452 b, was discovered by the Kepler mission and has a radius 60% larger than the Earth’s. It receives about 10% more light from its star than we do here on the Earth, and it’s probably about 2 billion years older. Together, these qualities mean it may be the most Earth-like exoplanet found to date (although there are lots of other similar planets).

Unfortunately, the host star is so distant, 1,400 lightyears from Earth*, that the usual method for directly estimating the planet’s mass, radial velocity observations, is not feasible. Instead, the planet’s discoverers constrain the planet’s mass by considering a range of compositions, calculating the radius expected for each of those compositions, and comparing it to the observed radius. Based on this analysis, they estimate at least a 49% probability that the planet is rocky, like the Earth.

Based on the amount of light it receives from its host star, there’s a good chance Kepler-452 b is habitable. This means, given a long-list of assumptions about the planet and its atmosphere, liquid water would be stable on its surface. Thus, Kepler-452 b joins a short but rapidly growing list of planets that might host life.

With our success finding potentially habitable planets, it’s probably only a matter of time (maybe just a few more years) before we find a planet that’s not just habitable but inhabited. Children in school right now might be the first generation to grow up in a universe where they know we’re not alone.

Today’s journal club attendees included Jennifer Briggs, Hari Gopalakrishnan, and Jacob Sabin.

*This website is the only reference I can find that gives the distance to Kepler-452 b from Earth. The paper itself doesn’t say 1,400 light years. The exoplanet.eu catalog gives a stellar magnitude V = 13.7 (also not given in the discovery paper). Converting that V magnitude to a flux and then using the stellar parameters given in the paper, I estimate a distance of 2,400 light years.

The recent study has removed Lord Helmet's original skepticism about buckyballs as the originator of DIBs.

The recent study has removed Lord Helmet’s original skepticism about buckyballs as the originator of DIBs.

At journal club today, we discussed the recent paper from Maier and colleagues which has solved the long-standing mystery of diffuse interstellar bands or DIBs.

These light absorption features were originally discovered by Heger way back in 1919, only a few months after the end of World War I. Their discrete absorption peaks are pervasive throughout visible wavelengths, indicating they are not simply due light-scattering by interstellar dust. The fact that they appear unchanged no matter the nature of the star whose light they absorb also suggests they don’t arise from the star itself. Instead, they must lay somewhere in the vast space between the Earth and the star.

Astronomers proposed DIBs might arise from dust grains, carbon chains, and even floating bacteria. Bucky balls, large soccer-ball-shaped carbon molecules, had also been proposed as candidates since they were discovered in white dwarf stars.

But deciding which candidate was actually the culprit required meticulous and highly sensitive lab work to recreate the extreme conditions of outer space, where temperatures are near absolute zero and gas pressures can be 10 million times smaller than at Earth’s surface. After twenty years of work, Maier and his team in Switzerland and Germany finally managed to create a little pocket of interstellar space in their lab.

By carefully ionizing buckyballs and introducing them into a cold He gas, they showed the spectral features created by the buckyballs in association with He matched almost exactly the spectral features of some DIBs.

The upshot of this is that the spectral forest of DIBs found at other wavelengths likely points to the prevalence of other large and complex molecules self-assembling in space, so this discovery is just the tip of the chemical iceberg. It has even been suggested that the complex molecular precursors for life originated in interstellar space in the same way as the buckyballs.

Whether that’s true or not, this discovery shows that the vast and lonely spaces between the stars aren’t quite as empty as they seem.

Journal club attendees included Jennifer Briggs, Emily Jensen, and Tyler Wade.