Join Boise State Physics for our First Friday Astronomy lecture series in Spring 2024. Lectures take place on the first Friday of the month (EXCEPT in April of this year when it will take place on the second Friday) at 7:30p MT on-campus and via live-stream at boi.st/astrobroncoslive. Visit https://www.boisestate.edu/physics/seminars-and-events/ for more information.
For Boise State Physics’ First Friday Astronomy event in January, we will host Leif Edmondson, president of the Boise Astronomical Society. Edmondson will talk about ancient Babylonian astronomy, so for this month’s blog post, rather than steal his thunder, I decided to talk about an astronomical tradition disconnected from Babylon: ancient Korean astronomy.
Saturn’s largest moon, Titan, was discovered by the Dutch astronomer Christiaan Huygens in 1655, the same year courts in Virginia first ruled slavery was legal in the American colonies. It took another 350 years before humans visited Titan upclose, leaving this, the largest moon in the Solar System, an object of wonder and speculation. But even after many years of intimate study, Titan remains enshrouded, both figuratively and literally. Its secrets may persist until NASA’s Dragonfly mission visits the world again in 2034, and if history is any guide, probably long after too.
Although the Cold Dark Matter Theory predicts the merger of dwarf galaxies, this image captures the first example to be studied in detail. From cosmotography.com/images/dwarf_galaxy_dark_matter.html.
Boise State Physics will host Prof. Yao-Yuan Mao of University of Utah on Friday, Oct 6 for our First Friday Astronomy lecture. Prof. Mao will talk about his work on low-mass galaxies and dark matter, and if the weather permits, we’ll stargaze on Boise State’s Quad after the lecture. In the meantime, let’s explore some of the most common questions people have about dark matter.
On the morning of Saturday, Oct 14, the Sun will transform into the eye of Sauron, a dark circle wreathed in otherworldly flame. Sauron’s gaze will cross the surface of the Earth from the Pacific Ocean, through the Pacific-Northwest and Southwest, and down the spine of Central America, before fizzling out of the east coast of Brazil. Though not as dramatic as total eclipses, annular eclipses like this one are more rare, owing to the eccentricities of orbital mechanics. And the same celestial forces have also woven a tapestry of occultations connecting the Oct 14 eclipse back to the founding of the Cologne Cathedral, a turning point in modern science, and the dawn of a new age.
Although our current understanding of gravity, the theory of general relativity, arose only one hundred years ago, scientists were speculating about exotic gravitational effects going back to before the word “scientist” even existed. Today, astronomers employ gravity in a variety of ways to study the cosmos, to look for planets outside our solar system and even to weigh some of the largest celestial bodies in existence. These measurements have shed light on some of the darkest of astronomical mysteries.
NASA’s James Webb Space Telescope (JWST), scheduled to launch on December 18, will primarily use its spectrographs – specialized instruments that capture and spread out light like a rainbow – to study exoplanets. By analyzing this data, known as spectra, researchers will be able to measure exoplanets’ compositions and chemistries. Spectra will help refine what we know about any exoplanet Webb observes, including massive gas giants, mid-sized ice giants, and smaller rocky exoplanets (some of which could be similar to Earth). In a few cases, JWST will deliver images of exoplanets to reveal more about them.
The roar of the Death Star exploding would have been impossible to hear at a distance since sound can’t travel in space.
Even though sound cannot propagate through the vacuum of space, that doesn’t mean we don’t know what space sounds like. Audio recordings have provided a wealth of information for space scientists almost since the beginning of the space era. Because of their simple and robust operation, microphones have been included on many past and recent space missions, on which they have recorded wind sounds and dust sounds. They will even accompany NASA’s return mission to Saturn’s moon Titan in the 2030s. Audio recordings allow us to reach far across space but also back and forth through time, and probably the last, soulful vestiges of human civilization will persist in the form of audio long after we’re gone.
Hidden within the depths of a distant galaxy, a luminous behemoth lurks. As it greedily devours whole star systems, the leviathan unlooses a blistering spurt of flame light years long and crackling so loudly it can be heard across the Universe. Astronomers first discovered these cosmic monsters, called active galactic nuclei or AGN, during World War II. Even though they are some of the brightest objects in the Universe, clouds of dust and gas within their host galaxies obscure their machinations. Understanding the evolution of galaxies and the formation of planetary systems requires unveiling these cosmic monsters, and computer simulations coupled with JWST observations are helping unveil these cosmic monsters.