exoplanets

All posts tagged exoplanets

IMG_4721

Beautiful Sky Pilot Mountain, south of Quest University.

The last two days of Exoclimes 2016 were as engaging as the first two — lots of great talks, discussion, and coffee break snacks.

The day 3 talks that really grabbed me were the first talks, focused on atmospheric mass loss from exoplanets since I’m currently working on that problem myself.

Ruth Murray-Clay gave a nice review talk about the variety of different mechanisms and regimes for atmospheric escape, while Eric Lopez suggested that, because escape should preferentially remove lighter elements from atmospheres, short-period exoplanets might retain water-rich envelopes, which could help us constrain their atmospheric compositions. Patricio Cubillos picked up on an idea previously explored by Owen and Wu and suggested that we could use mass-loss considerations to constrain the overall properties (density, etc.) of some short-period planets.

Other talks that stood out for me on day 3 included Eric Gaidos‘s talk about looking for geoengineering efforts by alien civilizations and Mateo Brogi‘s talk about measuring the spin rates of distant exoplanets, including GQ Lup b, a brown dwarf/high-mass exoplanet with a spin period of 3 days.

Day 4 of the conference whizzed by with a variety of talks regarding clouds and hazes in exoplanet atmospheres. Sarah Hörst taught us we should use the term ‘aerosol‘ instead of ‘clouds and/or hazes’ (since we’re not sure which of the two we’re seeing in exoplanet atmospheres).

Joanna Barstow and I rounded out the conference. She talked about her work analyzing exoplanet spectra and constraining aerosol (not clouds and/or haze) properties. Drawing upon the liturgical texts from the dawn of exoplanet science, I talked about my group’s work looking at Roche-lobe overflow of hot Jupiters (I’ve posted my talk below).



The first and second days of the Exoclimes conference were just excellent.

The indefatigable Andy Ingersoll opened the conference with a brilliant review talk comparing the state of exoplanet science to the development of solar system science over the centuries, and he suggested in exoplanets we are at the same point solar system astronomers were 50 years ago.

As the day progressed, we toured the universe, learning about the connection between a planet’s mass and composition, visiting Saturn’s moon Titan, and exploring the atmospheres of exoplanets, both via transit and by directly imaging the planets.

Dinner at Howe Sound Pub for a pint of their Super Jupiter ISA capped off the first day of the conference.

IMG_4657

The second day started with a focus on the connections between geology, life, and climate for Earth and how we might expand that understanding to exoplanets.

One talk that particularly stuck out for me was Robin Wordsworth’s talk about how the eruption of a large igneous province in Canada 720 million years ago (the Franklin LIP, as it’s called) may have catalyzed the Sturtian Glaciation, which provided a cautionary tale against making simple connections between the insolation a planet receives and its climate, the usual approach in exoplanetary astronomy.

After a visit to the Sea-to-Sky Gondala around lunch time and some spectacular views, the conference reconvened to discuss planets around low-mass stars. Since low-mass or M-dwarf stars are so small (less than half the mass of our Sun), finding and characterizing planets around them is a lot easier than for stars like our Sun. But M-dwarfs can be very different from Sun in many ways, and so it’s hard to know whether Earth-like planets around these stars would actually be Earth-like.

For instance, Antigona Segura discussed the effects of M-dwarf flares on the atmospheres of Earth-like planets and showed the flares can induce complex (and even potentially fatal) chemical changes in the atmospheres. Since M-dwarfs flare much more frequently than the Sun, it’s possible that life might be challenged on a planet orbiting an M-dwarf.

IMG_4684

I just arrived at Quest University in beautiful Squamish, British Columbia (or Sḵwx̱wú7mesh as it’s originally pronounced — the ‘7’ represents a glottal stop) for the start of the Exoclimes Conference, a biennial astronomy conference focused on the diversity of planetary atmospheres. Lots of amazing talks scheduled this week from the world’s leading experts. I can’t wait.

Couldn’t ask for a more inspiring locale.

IMG_4645

Raising_Super-EarthIn the three years since my daughter was born, the one lesson I’ve managed to wrench for the morass of toddler tantrums and sleepless nights is that, like all people, children are complicated and no two are exactly alike. However, decades of childhood development studies have shown at least one interesting (if sad) commonality — stress during childhood can stunt a child’s mental (and even physical) growth.

Like our understanding of child development, our understanding of the formation and evolution of planets, from the largest gas balls to the smallest icy specks, is still in its infancy. And the bewildering variety of exoplanets discovered in recent years has challenged even the fledgling comprehension we once had.

Particularly puzzling is the class of exoplanets known as sub-Neptunes or super-Earths. These planets are somewhere between the Earth and Neptune in size, many rich in hydrogen and helium. Even though they seem to be the most common type of planet in our galaxy, how they form is still an open question.

We understand a little better, though, how they grow up, and a recent paper by Chen and Rogers develops a new model to track the evolution of super-Earths after they form, as the planets age over billions of years.

The study applies this new model to investigate how we can use the size of a super-Earth to determine what the planet’s made out of. Normally, you’d need at least a planet’s mass AND size to constrain its composition, but several recent studies, including Chen and Rogers’s, show that the size of a super-Earth is mostly sensitive to the mass of its atmosphere — add just a little atmosphere to a super-Earth, and its radius blows up a lot. This result is hugely useful since most exoplanets only have their radius, not their mass, measured.

Chen and Rogers also explore the effects of atmospheric loss on super-Earths. Many known exoplanets are so close to their host stars that they are actively losing their atmospheres to space. Chen and Rogers show that this mass loss can completely remove the atmospheres of a very small super-Earth and remove a lot of the atmosphere from a large super-Earth, like childhood stress, leaving the planet stunted.

The upshot is that super-Earths with atmospheres that are small but not too small (about 1% of the planet’s mass) preferentially retain the atmosphere. Consistent with other studies, this result helps explain the otherwise puzzling frequency of super-Earths with smallish atmospheres.

In this age of open-source code, Chen and Rogers plan to make their model publicly available. So soon anyone will be able to raise a super-Earth from adolescence into adulthood and finally senility.

 

OsherPagesTopPic2015I gave a talk at Boise State’s Osher Lifelong Learning Institute on exoplanets generally and my group’s research specifically.

The crowd was really amazing. Despite my being delayed by a flat bike tire, there was an enormous group of enthusiastic astrophiles waiting for me when I arrived.

We toured the night sky briefly using the stellarium program, a free (but please donate) and open-source night sky simulator available here — http://stellarium.org/.

I made quite a long talk to fill the two-hour scheduled slot, but there were so many interesting questions, I barely made it halfway through. I’ve posted my abstract and presentation below in case there’s any interest.

The Exoplanet Revolution

The discoveries of hundreds of planets outside our solar system, called exoplanets, have led to a renaissance in astrophysics and revolutionized every sub-discipline within planetary astronomy. The vast array of new planets strains imagination, and even after two decades of discovery, exoplanets pose a host of astrophysical riddles. In this presentation, I’ll describe how these distant worlds have revised our picture of planet formation and evolution. I’ll also discuss outstanding questions in planetary astrophysics and prospects for observational work, including the TESS mission, selected by NASA for a 2017 launch to find more, nearby planets.

UPDATE (2016 Mar 24): The paper is now available for free on astro-ph.

The Astrophysical Journal published today a paper by my colleagues and myself investigating in detail a way to look for moons around transiting exoplanets.

The discoveries of thousands of planets and planetary candidates over the last few decades has motivated a parallel effort to find exomoons. In addition to providing a base of operations for the Empire, exomoons might actually be a better place to find extrasolar life than exoplanets in some ways.

This technique for finding exomoons, called the Orbital Sampling Effect, was developed by René Heller and involves looking for the subtle signature of a moon’s shadow alongside the shadow of its transiting planet host, as depicted in the image below.

At epoch (1), a satellite’s transits just before the planet. At epoch (2), the planet's transit begins, inducing a large dip the measured stellar brightness. At epoch (3), the satellite modifies the planet's transit light curve slightly but measurably.

The dark cloud shown around the planet represents the exomoon’s shadow, averaged over several orbits. At epoch (1), a satellite transits just before the planet. At epoch (2), the planet’s transit begins, inducing a large dip in the measured stellar brightness. At epoch (3), the satellite modifies the planet’s transit light curve slightly but measurably.

This simple technique has advantages over alternative exomoon searches in that it doesn’t require significant computational resources to implement. It can also use data already available from the Kepler and K2 missions. However, on its own, the technique can’t provide a moon’s mass, only its size, and it requires many transits of the host planet to find the moon’s quite subtle transit signature.

No exomoon has been found yet in spite of tremendous efforts to find them, so the search continues.

 

The red dots show the observations, with the dips due to asteroid chunks transiting the white dwarf. The inset shows an artist's conception of the disruption process.

The red dots show the observations from this study, with the dips due to asteroid chunks transiting the white dwarf. The inset shows an artist’s conception of the disruption process.

For our second journal club meeting this semester (didn’t manage to blog the first one), we discussed a study from Saul Rappaport and colleagues on observations of the white dwarf WD 1145+017, which continues to show evidence that it is eating a small asteroid.

A study last year from Vanderburg and colleagues (which we discussed last semester) presented observations from the K2 Mission showing distinctive but highly-variable transit signals coming from WD 1145+017. That group conducted follow-up observations that pointed to the presence of an asteroid very close to the star, being ripped apart by the star’s gravity.

As crazy as it sounds, the idea that some white dwarfs are eating asteroids is fairly well-established, but Vanderburg’s study was the first to present observations of the process clearly in action. The variability of the transit signals indicates that the violent process is dynamic and complicated.

This new study from Rappaport and colleagues continues the saga of WD 1145+017 and finds that the disruption process persists more than a year after the initial observations. And using the apparent drift rates of the different chunks of asteroid, Rappaport is able to constrain the mass of the parent asteroid to be about 1% that of Ceres in our solar system.

One of the most exciting aspects of this study for me is that the observations were made using a network of small, amateur telescopes. Some of the scopes used in the study were 25-cm, and so I’m hopeful that, in the near future, we will be able to use Boise State’s own Challis Observatory to conduct follow-up. Just gotta wait for a clear night.

Boise State’s Institute for STEM and Diversity Initiatives is hosting Aerospace Day here on campus today, a day to explore the science, engineering, and applications of aerospace technology.

I volunteered to give a talk on our group’s research looking for short-period exoplanets, and it seemed well-received. Lots of interesting questions afterward. I’ve posted the talk below.

During my talk, I mentioned the planethunters.org website, where the public can help find new exoplanets using data from the Kepler mission.

Thanks to Christine Chang Gillespie, Donna Llewellyn, and all the other organizers for the invitation to speak.

Last week, I had a lovely visit to the Astronomy Dept at New Mexico State University in beautiful Las Cruces. I was invited to give one of the dept’s weekly colloquia about our research group’s work on very short-period exoplanets. While there, I talked dust devil science with my host Prof. Jim Murphy, his student Kathryn Steakley, and Lynn Neakrase.

I also enjoyed some excellent Mexican food at the Double Eagle Restaurant, which has been haunted by the ghosts of two young lovers since just after the Mexican-American War.

The International Space Station passing over Mesilla, NM on 2015 Dec 4.

The International Space Station passing over Mesilla, NM on 2015 Dec 4.

Just before dinner, the ISS also passed directly over our heads, and I got a very poor photo of it (left).

So, all in all, a great visit.

 

 

I’ve posted my abstract and presentation below.

On the Edge: Exoplanets with Orbital Periods Shorter Than a Peter Jackson Movie


From wispy gas giants to tiny rocky bodies, exoplanets with orbital periods of several days and less challenge theories of planet formation and evolution. Recent searches have found small rocky planets with orbits reaching almost down to their host stars’ surfaces, including an iron-rich Mars-sized body with an orbital period of only four hours. So close to their host stars that some of them are actively disintegrating, these objects’ origins remain unclear, and even formation models that allow significant migration have trouble accounting for their very short periods. Some are members of multi-planet system and may have been driven inward via secular excitation and tidal damping by their sibling planets. Others may be the fossil cores of former gas giants whose atmospheres were stripped by tides.

In this presentation, I’ll discuss the work of our Short-Period Planets Group (SuPerPiG), focused on finding and understanding this surprising new class of exoplanets. We are sifting data from the reincarnated Kepler Mission, K2, to search for additional short-period planets and have found several new candidates. We are also modeling the tidal decay and disruption of close-in gaseous planets to determine how we could identify their remnants, and preliminary results suggest the cores have a distinctive mass-period relationship that may be apparent in the observed population. Whatever their origins, short-period planets are particularly amenable to discovery and detailed follow-up by ongoing and future surveys, including the TESS mission.

k2scicon_web_bannerOn my way back to Boise from the first K2 Science Conference, a week-long conference on the K2 Mission, successor to the Kepler mission.

Although I had to leave only two days into the conference (gotta get back to teach about the Origins of Earth Life), I got to see some amazing talks.

Talks that really stick out in my mind include Natalie Batalha‘s talk about the frequency of Earth-like planets (one for every three Sun-like stars); Roberto Sanchis-Ojeda‘s talk on a disintegrating planet with a cometary tail; and Jim Fuller‘s talk about measuring magnetic fields deep in the hearts of red giant stars by studying waves on the stars’ surfaces. The burritos at Sandbar on State St. are also pretty amazing.

All in all, a dazzling conference in refreshing Santa Barbara, CA.