Brian Jackson

Professor of Physics at Boise State University

  • About Brian
  • Our Group’s Research
    • CV
    • Joining the Boise State Planetary Science Research Group
    • Research Experiences for Undergrads
    • Ultra-short-period planet database
    • The Short Period Planets Group — S(u)PerP(i)G
    • Google Scholar Page
    • Code
  • Teaching
  • Public Outreach
    • Boise State’s Astronomical Observatory
    • Central Idaho Dark Sky Reserve STEM Network

Planetary Collisions and Exoplanet Atmospheres

Posted by admin on October 17, 2015
Posted in: BSU Journal Club. Tagged: astronomy, exoplanets.
Artist's depiction of a collision between two planetary bodies. From https://en.wikipedia.org/wiki/Giant_impact_hypothesis.

Artist’s depiction of a collision between two planetary bodies. From https://en.wikipedia.org/wiki/Giant_impact_hypothesis.

We read a fun paper in journal club today, written by Inamdar and Schlichting of MIT that looks at the impact of large impactors on the atmospheres of gas-rich exoplanets.

Among the surprising discoveries of exoplanet searches is a huge class of  gas-rich planets between Neptune and Earth in size. Called sub-Neptunes or super-Earths, standard models for planet formation predict these planets shouldn’t exist — either they should have remained as small as the Earth as they accreted or they should have quickly grown to the size of Jupiter or Saturn. We don’t have planets like these in our solar system, but they may be one of the most abundant type of planet in the galaxy.

Even harder to understand, sub-Neptunes display a very broad range of densities, with some having densities greater than Earth’s and others with the density of wind-packed snow. This diversity indicates some planets have large rocky/icy cores with just a little gas on top, while others have tiny cores with bloated hydrogen/helium atmospheres. Since we think gaseous planets all form more-or-less the same way, it’s hard to explain this wide range of internal structures.

Inamdar and Schlichting explore the possibility that giant impacts between young planets in these systems could account for this diversity. By applying a simple 1-D hydrodynamic model, they show that these massively violent collisions could easily remove large amounts of atmosphere from the young planets.

Whether a certain planet experienced such a collision depends in a stochastic way on the initial conditions and gravitational interactions in these chaotic young planetary systems. So some planets would have experienced large collisions that removed a lot of their atmospheres, giving a high mean density, while others didn’t, leaving them low-density.

These same kind of planetary collisions shaped the diversity of planets in our own solar system. For example, the Earth’s Moon formed as the result of a collision between the proto-Earth and Mars-sized object, named Theia. Uranus probably got its unusual tilt from a collision with an Earth-sized object early in its history.

So even though most extrasolar planetary systems we know about don’t resemble our own, the results from this study show the same processes shaped them, and planets everywhere probably experienced a violent adolescence.

Journal club attendees today included Jennifer Briggs, Karan Davis, Hari Gopalakrishnan, Tyler Gordon, Emily Jensen, and Jacob Sabin.

 

Posts navigation

← Enceladus’ Hidden Ocean
Collisions in Close-Knit Planetary Systems Promote Growth →
  • Recent Posts

    • University of Tokyo – 2025 Jun 10
    • M-MATISSE 2025 Workshop
    • Aerial Exploration of Mars – PNACP 2025
    • Summer 2025 First Friday Astronomy
    • Spring 2025 First Friday Astronomy
  • Archives

    • June 2025
    • May 2025
    • April 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023
    • May 2023
    • April 2023
    • March 2023
    • February 2023
    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
    • October 2014
    • September 2014
    • August 2014
    • July 2014
    • June 2014
    • May 2014
    • April 2014
    • March 2014
    • February 2014
    • January 2014
    • December 2013
    • November 2013
    • October 2013
    • September 2013
    • August 2013
    • July 2013
Proudly powered by WordPress Theme: Parament by Automattic.