Brian Jackson

Associate Professor of Physics at Boise State University

  • About
  • Research
    • CV
    • Joining the Boise State Planetary Science Research Group
    • Research Experiences for Undergrads
    • Ultra-short-period planet database
    • The Short Period Planets Group — S(u)PerP(i)G
    • Google Scholar Page
    • Code
  • Teaching
  • Press
  • Extracurricular Activities
    • Field Trips
      • Bruneau Sand Dunes – 2022 Jun 29
  • Public Outreach
    • Boise State’s Astronomical Observatory
    • Central Idaho Dark Sky Reserve STEM Network

Helium in the eroding atmosphere of an exoplanet

Posted by admin on February 22, 2019
Posted in: BSU Journal Club. Tagged: atmospheric escape, hubble, transiting planets, WASP-107b.

Artist’s conception of a hot Jupiter shedding mass.

The very first exoplanet discovered around a Sun-like star, 51 Peg b, was a shocker – it’s a giant planet like Jupiter made mostly of hydrogen and helium but 100 times closer to its sun than Jupiter is to ours and whizzes around its orbit every 4 days.

Indeed, when its discoverers Michel Mayor and Didier Queloz first spotted the telltale spectral wobble of a planet in a 4-day orbit, they didn’t believe their discovery. At the time, everyone knew (or thought they knew) that planets like Jupiter could only form very far away from their host star.

Worse, so close to its star, 51 Peg b’s was being super-heated, and Mayor and Queloz worried that such a hot gas giant might quickly lose its hot, bloated atmosphere. And in their discovery paper, they suggested that the giant planet we see today as 51 Peg b might have started out as a brown dwarfthat shed trillions and trillions of lbs.

Later studies showed those early concerns about atmospheric blow-off were overblown and planets as massive as 51 Peg b, even if they are as scorched, probably can’t lose more than a fraction of their original mass. Since then, hot Jupiters like 51 Peg b, while cosmically rare, have become a fairly common type of exoplanet discovery.

But that doesn’t mean these planets aren’t losing a lot of mass, and a recent study from David Sing and colleagues looks at one of the mass-losing-est planets we know of, WASP-107b

Artist’s conception of WASP-107b transiting its host star.
From https://en.wikipedia.org/wiki/WASP-107b.

Sing and colleagues collected transit observations in infrared wavelengths of the WASP-107 system using the venerable Hubble Space Telescope. By looking in the infrared, they could search for the spectral signals of different gases in WASP-107b’s atmosphere.

WASP-107b is an especially good target for atmospheric characterization because its host star is very bright (compared to other planet hosts) and the planet itself is very low density – it has a mass a tenth that of Jupiter’s but a radius almost as big, giving the planet a density comparable to wind-packed snow.

With such a low density, WASP-107b’s atmosphere is puffy and distended, which means that its atmospheric gases can easily imprint their spectral signatures on the light observed by Hubble, making them easy to detect.

And for the first time in any exoplanet, Sing and colleagues saw signs of helium gas in WASP-107b’s atmospheric spectrum. In fact, the helium signal they saw was so whopping big that it suggests WASP-107b’s atmosphere is actively escaping, at a rate of about 10,000 tons per second.

Escape of WASP-107b’s atmosphere. The planet is the small grey circle near bottom, the star is the yellow circle, and the escaping atmosphere is shown in blue. The black line is the planet’s orbit. From Sing et al. (2018).

Even with such a high escape rate, WASP-107b won’t fall apart anytime soon – Sing and colleagues estimate it would only lose about 4% of its mass in a billion years.

But as we continue to find more exoplanets, we should probably expect to find more even closer to their host stars with even puffier atmospheres, perhaps some on the verge of being gravitationally ripped apart. So as with 51 Peg b’s discovery, exoplanets are likely to keep challenging our preconceived notions about where planets can and cannot be.

Posts navigation

← Dust Storms on Titan
Aerospace Day – 2019 Feb 28 →
  • Twitter: decaelus

    Brian Jackson
    • RT @decaelus: Get paid to live in the beautiful @Idahodarksky next summer - https://t.co/sgoWb9PrpK. E-mail me directly with any question… 05:08:24 2023 Jan 7
    • Get paid to live in the beautiful @Idahodarksky next summer - https://t.co/sgoWb9PrpK. E-mail me directly with an… https://t.co/B9V7FwtQxx 02:47:26 2022 Dec 19
    • Very troubling - Idaho’s Republican primary is already closed — but the party may close it off even more… https://t.co/R3BomhNHFa 01:25:49 2022 Dec 19
    @decaelus
  • Recent Posts

    • Introduction to CIDSRSN – 2023 Jan 27
    • Astronomy Research Group Meeting – 2023 Jan 26
    • Astronomy Research Group Meeting – 2023 Jan 19
    • Dust in the Wind – Presentation at College of Idaho – 2023 Feb 14
    • Artemis I Mission
  • Archives

    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
    • October 2014
    • September 2014
    • August 2014
    • July 2014
    • June 2014
    • May 2014
    • April 2014
    • March 2014
    • February 2014
    • January 2014
    • December 2013
    • November 2013
    • October 2013
    • September 2013
    • August 2013
    • July 2013
Proudly powered by WordPress Theme: Parament by Automattic.