Brian Jackson

Associate Professor of Physics at Boise State University

  • About
  • Research
    • CV
    • Joining the Boise State Planetary Science Research Group
    • Research Experiences for Undergrads
    • Ultra-short-period planet database
    • The Short Period Planets Group — S(u)PerP(i)G
    • Google Scholar Page
    • Code
  • Teaching
  • Press
  • Extracurricular Activities
    • Field Trips
      • Bruneau Sand Dunes – 2022 Jun 29
  • Public Outreach
    • Boise State’s Astronomical Observatory
    • Central Idaho Dark Sky Reserve STEM Network

Disintegrating planets

Posted by admin on May 28, 2015
Posted in: BSU Journal Club.
Simulated dust tails around the disintegrating planet EPIC 201637175 b. From Sanchis-Ojeda+ (2015).

Simulated dust tails around the disintegrating planet EPIC 201637175 b. From Sanchis-Ojeda+ (2015).

Fun research group meeting today. We discussed research papers on a new class of extrasolar planet, ultra-short period planets. Most of these planets are small and rocky, and some of them are so small, rocky, and hot that they are actively disintegrating.

We first discussed Spitzer Space Telescope observations by Demory and colleagues of 55 Cnc e, a rocky planet with a mass and radius eight and two times the Earth’s, respectively, but almost 100 times closer to its star than the Earth is to the Sun. Its surface temperature is about 2000 K, hot enough to form a molten rock lake on the planet’s dayside.

Demory and colleagues looked at 55 Cnc e’s transits and eclipses from 2011 and 2013 and found that they changed quite a lot. Why they’ve changed isn’t clear. Demory et al. speculated that perhaps the planet exhibits extreme volcanic activity, similar to Jupiter’s moon Io, and the erupted material has gone into orbit around the star, causing variable transits and eclipses.

We next discussed the discovery of a new disintegrating rocky planet using data from the K2 mission by Sanchis-Ojeda and colleagues.

This planet, EPIC 201637175 b, zips around its star every 9 hours, and because it’s so hot (1500 K), its rocky surface is evaporating, leaving behind a dust tail, like a comet. Subtle indications of the dust tail appear in the K2 measurements as tell-tale bumps in the light curve, suggesting the dust is scattering light in complicated and surprising ways.

More follow-up work will help us understand this new extreme class of planet, perhaps even allow us to figure out what they’re made of and where they came from.

Attendees at today’s group meeting include Jennifer Briggs, Emily Jensen, Liz Kandziolka, and Tyler Wade.

Posts navigation

← Edison and The Electric Chair
Searching for Habitable Planets Around Small Stars →
  • Twitter: decaelus

    Brian Jackson
    • Learn how to save the dark (https://t.co/CqYzD5o2Xh at @BroncoPhysics First Friday Astronomy event this Fri (Feb 3… https://t.co/8B3Set3tW0 10:49:28 2023 Jan 30
    • RT @decaelus: Get paid to live in the beautiful @Idahodarksky next summer - https://t.co/sgoWb9PrpK. E-mail me directly with any question… 05:08:24 2023 Jan 7
    • Get paid to live in the beautiful @Idahodarksky next summer - https://t.co/sgoWb9PrpK. E-mail me directly with an… https://t.co/B9V7FwtQxx 02:47:26 2022 Dec 19
    @decaelus
  • Recent Posts

    • Saving the Dark
    • Introduction to CIDSRSN – 2023 Jan 27
    • Astronomy Research Group Meeting – 2023 Jan 26
    • Astronomy Research Group Meeting – 2023 Jan 19
    • Dust in the Wind – Presentation at College of Idaho – 2023 Feb 14
  • Archives

    • January 2023
    • December 2022
    • November 2022
    • October 2022
    • September 2022
    • August 2022
    • July 2022
    • June 2022
    • May 2022
    • April 2022
    • March 2022
    • February 2022
    • January 2022
    • December 2021
    • November 2021
    • October 2021
    • September 2021
    • August 2021
    • July 2021
    • June 2021
    • May 2021
    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
    • October 2014
    • September 2014
    • August 2014
    • July 2014
    • June 2014
    • May 2014
    • April 2014
    • March 2014
    • February 2014
    • January 2014
    • December 2013
    • November 2013
    • October 2013
    • September 2013
    • August 2013
    • July 2013
Proudly powered by WordPress Theme: Parament by Automattic.